A note on Grundy colorings of central graphs
نویسنده
چکیده
A Grundy coloring of a graph G is a proper vertex coloring of G where any vertex x, colored with c(x), has a neighbor of any color 1, 2, . . . , c(x)− 1. A central graph Gc is obtained from G by adding an edge between any two non adjacent vertices in G and subdividing any edge of G once. In this note we focus on Grundy colorings of central graphs. We present some bounds related to parameters of G and a Nordhaus-Gaddum inequality. We also determine exact values for the Grundy coloring of some central classical graphs.
منابع مشابه
Recoloring graphs via tree decompositions
Let k be an integer. Two vertex k-colorings of a graph are adjacent if they differ on exactly one vertex. A graph is k-mixing if any proper k-coloring can be transformed into any other through a sequence of adjacent proper k-colorings. Jerrum proved that any graph is k-mixing if k is at least the maximum degree plus two. We first improve Jerrum’s bound using the grundy number, which is the wors...
متن کاملOn the equality of the partial Grundy and upper ochromatic numbers of graphs
A (proper) k-coloring of agraph G is a partition = {V1; V2; : : : ; Vk} of V (G) into k independent sets, called color classes. In a k-coloring , a vertex v∈Vi is called a Grundy vertex if v is adjacent to at least one vertex in color class Vj , for every j, j¡ i. A k-coloring is called a Grundy coloring if every vertex is a Grundy vertex. A k-coloring is called a partial Grundy coloring if eve...
متن کاملRecoloring bounded treewidth graphs
Let k be an integer. Two vertex k-colorings of a graph are adjacent if they differ on exactly one vertex. A graph is k-mixing if any proper k-coloring can be transformed into any other through a sequence of adjacent proper k-colorings. Any graph is (tw + 2)-mixing, where tw is the treewidth of the graph (Cereceda 2006). We prove that the shortest sequence between any two (tw + 2)-colorings is a...
متن کاملPerfect $2$-colorings of the Platonic graphs
In this paper, we enumerate the parameter matrices of all perfect $2$-colorings of the Platonic graphs consisting of the tetrahedral graph, the cubical graph, the octahedral graph, the dodecahedral graph, and the icosahedral graph.
متن کاملA note on vague graphs
In this paper, we introduce the notions of product vague graph, balanced product vague graph, irregularity and total irregularity of any irregular vague graphs and some results are presented. Also, density and balanced irregular vague graphs are discussed and some of their properties are established. Finally we give an application of vague digraphs.
متن کاملذخیره در منابع من
با ذخیره ی این منبع در منابع من، دسترسی به آن را برای استفاده های بعدی آسان تر کنید
برای دانلود متن کامل این مقاله و بیش از 32 میلیون مقاله دیگر ابتدا ثبت نام کنید
ثبت ناماگر عضو سایت هستید لطفا وارد حساب کاربری خود شوید
ورودعنوان ژورنال:
- Australasian J. Combinatorics
دوره 68 شماره
صفحات -
تاریخ انتشار 2017